Planning and Programming with First-Order Markov Decision Processes: Insights and Challenges

نویسنده

  • Craig Boutilier
چکیده

Markov decision processes (MDPs) have become the de facto standard model for decision-theoretic planning problems. However, classic dynamic programming algorithms for MDPs [22] require explicit state and action enumeration. For example, the classical representation of a value function is a table or vector associating a value with each system state; such value functions are produced by iterating over the state space. Since state spaces grow exponentially with the number of domain features, the direct application of these models to AI planning problems is limited. Furthermore, for infinite and continuous spaces, such methods cannot be used without special knowledge of the form of the value function or optimal control policy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Genetic Programming as Policy Search in Markov Decision Processes

In this paper, we examine genetic programming as a policy search technique for planning problems representable as Markov Decision Processes. The planning task under consideration is derived from a real-time strategy war game. This problem presents unique challenges for standard genetic programming approaches; despite this, we show that genetic programming produces results competitive with stand...

متن کامل

Faster Dynamic Programming for Markov Decision Processes

Markov decision processes (MDPs) are a general framework used in artificial intelligence (AI) to model decision theoretic planning problems. Solving real world MDPs has been a major and challenging research topic in the AI literature, since classical dynamic programming algorithms converge slowly. We discuss two approaches in expediting dynamic programming. The first approach combines heuristic...

متن کامل

LIFT-UP: Lifted First-Order Planning Under Uncertainty

We present a new approach for solving first-order Markov decision processes combining first-order state abstraction and heuristic search. In contrast to existing systems, which start with propositionalizing the decision process and then perform state abstraction on its propositionalized version we apply state abstraction directly on the decision process avoiding propositionalization. Secondly, ...

متن کامل

Integrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty

In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied.  The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004